
J .  Fluid Mech. (1970), vol. 44, part 4, pp. 781-790 

Printed in areat Britain 

781 

Some relations between drag and flow pattern of 
viscous flow past a sphere and a cylinder at low 

and intermediate Reynolds numbers 

By H. R. PRUPPACHER, 
Cloud Physics Laboratory, Department of Meteorology, 

University of California, Los Angeles 

B. P. LE CLAIR AND A. E. HAMIELEC 
Chemical Engineering Department, McMaster University, Hamilton, Canada 

(Received 3 February 1970) 

The results of a numerical evaluation of the Navier-Stokes equations of motion 
for the case of a viscous fluid streaming past a sphere are presented in terms of the 
length of the standing eddy behind the sphere and in terms of the angle of flow 
separation at  the sphere. Emphasis was placed on calculating these quantities at  
Reynolds numbers between 20 and 40 where no reliable theoretical or experi- 
mental values are available. In  support of these calculations, it is shown that the 
values for the drag on a sphere previously calculated by us from the Navier- 
Stokes equations of motion by the same numerical technique as that used for 
calculating the eddy length and angle of flow separation agree well with our 
recent, extensive drag measurements for a wide Reynolds number interval. Our 
results are used to make a comparison between drag and flow field as predicted 
by analytical solutions and numerical solutions to the Navier-Stokes equations 
of motion. Some limitations of the analytical solutions to predict correct values 
for the drag, and to describe the correct nature of the flow field, are pointed out. 
It is shown further that a plot of [(D/D,) - 13 versus log NRe, where D is the actual 
drag on a sphere, D, is the Stokes drag, and NRe is the Reynolds number, reveals 
that the variation of the drag on a sphere with Reynolds number follows well 
defined r6gimes, which correlate well with the regimes of the flow field around 
a sphere. A similar relationship between ‘drag-r6gime’ and flow field pattern is 
discussed for the case of viscous flow past a cylinder. 

1. Introduction 
For over a century the sphere and the circular cylinder have been subject to 

numerous studies of viscous, incompressible flow at low and intermediate 
Reynolds numbers. During the last ten years, the problems related to viscous 
flow past a sphere and a cylinder have gained new and increasing attention. In 
particular, attention has been given to determining the drag on a liquid and rigid 
sphere by methods which involved solving the Navier-Stokes equation of motion 
analytically (Chester & Breach 1969; Proudman 1969; Ockendon 1968), or 
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numerically (Le Clair, Hamielec & Pruppacher 1970; Rimon & Cheng 1969; 
Hamielec, Hoffman & Ross 1967; Hamielec & Johnson 1962; Hamielec, Storey & 
Whitehead 1962), and by experimental techniques (Beard & Pruppacher 1969; 
Le Clair et al. 1970; Pruppacher & Steinberger 1968; Goldburg & E’lorsheim 1966; 
Maxworthy 1965). Similar attention has been given to determining the drag on 
a circular cylinder by numerical methods (Underwood 1969; Hamielec & Raal 
1969; Son & Hanratty 1969; Ingham 1968; Kawaguti & Jain 1966; Keller & 
Takami 1966; Dennis & Shimshoni 1964) and by experimental techniques 
(Jayaweera & Mason 1965; Tritton 1959). The interest in such drag studies has 
been stimulated by a variety of important problems in chemical engineering, 
air pollution, and cloud and precipitation physics. 

In  cloud physics, the problem of flow past spheres enters importantly in 
determining theoretically the growth by collision of cloud drops to rain drops in 
atmospheric clouds. As shown by Beard & Pruppacher (1969), cloud drops can 
well be approximated by rigid spheres up to NRe = 200 (where NRe = 2aV,/v, 
a being the radius of the sphere, V, the terminal velocity of the sphere and Y being 
the kinematic viscosity of the air), which is reasonable in the light of their large 
internal pressures, their extremely small deformation and their very small 
internal circulation (Pruppacher & Beard 1970). The problem of flow past 
cylinders enters importantly in determining theoretically the growth by collision 
of ice crystals the shape of which, in some cases, can roughly be approximated by 
a cylinder. The conditions for collision of two spherical or cylindrical shaped 
particles depends on an accurate description of the trajectory of the two inter- 
acting particles. This in turn makes necessary an accurate description of the flow 
field past these particles. 

2. The sphere 
Two quantities which characterize the flow field of a viscous fluid streaming 

past a sphere are the length of the standing eddy behind the sphere and the angle 
of flow separation a t  the sphere. Only a very few reliable experimental measure- 
ments and theoretical calculations are available on these two parameters, in 
particular at  Reynolds numbers close to that at which the standing eddy starts to 
develop. We have therefore attempted to compute both of these quantities from 
a numerical solution of the steady state Navier-Stokes equations of motion for an 
incompressible fluid. Since the physical model and the computational technique 
have been described in detail in two earlier papers in conjunction with our 
calculations of the drag on a sphere (Hamielec et al. 1967; Le Clair et al. 1970), we 
shall merely present and discuss our results here. 

Our results for the variation of the eddy length L l d  as a function of NRe are 
presented in figure 1, and our results for the variation of the angle of flow separa- 
tion 6, as a function of log NRe are presented in figure 2, where they are compared 
with the theoretical results of Jenson (1959), Hamielec et al. (1967), Rimon & 
Cheng (1969), Rhodes (1967), and Proudman & Pearson (1957), and with the 
experimental results of Taneda (1956a), Garner & Grafton (1954), and Nisi & 
Porter (1923). It is seen from these figures that the agreement between Taneda’s 
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experimental and our theoretical values is good, except a t  low Reynolds numbers 
where Taneda somewhat underestimates the eddy length and angle of separation. 
This discrepancy is expected if we consider the extreme difficulties in visualizing 
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FIGURE 1. Variation of the eddy length with the Reynolds number for the case of a 
sphere. Theory: 0, HamieIec-Hoffman-Ross; x , Rimon-Cheng; A, present results; 
_ _ _  , Proudman-Pearson (from first 2 terms of the Stokes expansion); - , present 
proposed variation of L/d  with NRc. Experiment: . . . . . . , Taneda. 

FIGURE 2 .  Variation of the angle of flow separation with Reynolds number for the case of 
a sphere. Theory: 0, Jenson; 0, Hamielec-Hoffman-Ross; x , Rimon-Cheng; 0, 
Rhodes; A, present results; - - - , Proudman-Pearson (from fist 2 terms of the Stokes 
expansion) ; - , present proposed variation of 6, with NRd. 

the flow at small Reynolds numbers with tracer particles of finite size and finite 
fall velocities relative to the fluid motion. The experimental results of Nisi & 
Porter were probably biased by their method of sphere support. The value for 
Lld ,  obtained theoretically by Rimon & Cheng for NRe = 10, is probably not 
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valid for a sphere in undisturbed, parallel flow, as their boundary conditions were 
satisfied too close to the sphere surface. Our numerical computations (displayed 
in figures 1 and 2) indicate that onset of the development of a standing eddy in 
the back of the sphere takes place at  NRe = 20. By varying step size and distance 
to the outer boundary, we made sure that our computed values for Lld and 0, 
were not biased by these parameters. The effect of step size and wall proximity 
on 8, for N,, = 20 is shown in table 1. This table suggests that indeed 0, = 0 
for NRe = 20. Our values for Lld and 0, are further compared with those 
determined by Proudman & Pearson from a stream function based on two terms 
of the Stokes expansion. These relations predict an onset of a recirculatory wake 
at NRe = 16, and a growth of the eddy, which is in astonishingly good agreement 
with the numerical results as far as its length is concerned, but is in quite poor 
agreement with those as far as its angular extent is concerned. In  case the next 

A 0  0, 
Az (“1 (”) 

Jenson (1959) 0.1 12 6.05 9 

Hamielec et al. (1967) 0.05 3 7.02 0 
Rhodes (1967) 0.05 6 6.05 2.5 

Present results 0.05 3 90 0 
0.0167 3 90 0 

TABLE 1. Effect of step size on the computation of angle of flow separation at NRB = 20 
for the case of a sphere; Az is the radial step size, A0 is the angular step size and r ,  = r:/a 
is the non-dimensional distance to the boundary 

higher-order term in the Stokes expansion of Proudman & Pearson is taken into 
account, no eddy at all is predicted (Van Dyke 1964). This result is very sur- 
prising, but it is consistent with the findings of Chester & Breach (1969) regarding 
the drag discussed below. Unfortunately, available theoretical mod& and 
numerical techniques have up to the present not allowed the prediction of the 
Reynolds number for onset of shedding of vortices from the rear of a sphere. 
Experiments by Moller (1938), Taneda (1956~) and Goldburg & Florsheim (1966) 
indicate that shedding of vortices begins a t  Reynolds numbers between 300 and 
450. 

In  support of the calculations given above, we summarized in figure 3 our 
recent data (Hamielec et al. 1967; Le Chair et al. 1970) for the drag on a sphere 
obtainedfrom solving the Navier-Stokes equations by the samenumericalmethod 
used for the calculations of the eddy length and angle of flow separation. These 
theoretical results are compared with our recent experimental determination of 
the drag determined on solid spheres falling in oil (Pruppacher & Steinberger 
1968; Le Clair et al. 1970), and on small water drops (Beard & Pruppacher 1969) 
freely floating in air of a large, vertical wind tunnel, described by Pruppacher & 
Neiburger (1968). The good agreement between our experimental results and 
those given by Perry (1950) for Reynolds numbers between 70 and 300 motivated 
our use of Perry’s data for extending the experimental drag ourve up to 
NRe = 5000. Furthermore, we thought it may be instructive to compare our 
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theoretical and experimental values for the drag on a sphere with the numerical 
results of Jenson (1959), Rimon & Cheng (1969) and with the analytical results 
of Oseen (1927), Goldstein (1929), Carrier (1953), Proudman & Pearson (1957), 
and in particular with the results of Chester & Breach (1969) and Proudman 
(1969). From figure 3, where the variation of log [(DID,) - 11 with logN,, is 
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FIGURE 3. Variation of the quantity (DID,) - 1 with the Reynolds number for the case of 
a sphere: *, Maxworthy (experimental) ; H, Le Clair-Hamielec-Pruppacher ; 0, Hamielec- 
Hoffman-Ross ; A, Jenson ; x , Rimon-Cheng ; ( 1 ) , Chester-Breach ; (2), Proudman- 
Pearson; (3) ,  Oseen; (4), Goldstein; ( 5 ) ,  Carrier; (6a)-(6b) ,  Pruppacher, Board- 
Priippacher, Pruppacher-Steinberger (experimental) ; 0, (7) ,  Perry (experimental) ; ( 8 ) ,  
Proudman (m = 5 )  ; m, experimental scatter. 

plotted, D being the actual drag and D, the Stokes drag, the following conclusions 
are suggested : 

(i) For a wide range of Reynolds numbers 0.01 < NRe < 400, the drag on a 
sphere computed from our numerical solution of the Navier-Stokes equations of 
motion agrees well with our experimental values. However, extreme care has to 
be taken to correct errors introduced by step size and wall effects, in particular, 
at low Reynolds numbers, as pointed out by Hamielec et al. (1967), and Le Clair 
et aZ. (1970). The results of Jenson, plotted in figure 3, are an example of results 
containing errors which were introduced by such effects. The success of the 
numerical approach is contrasted in figure 3 by the results of analytical solutions 
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to the Navier-Stokes equations of motion by Oseen (1927), Goldstein (1968), and 
Proudman & Pearson (1957), which satisfactorily represent the drag on a sphere 
only up to about NRe = 0.1. At larger Reynolds numbers the analytical results 
depart increasingly from the true drag. 

It is of particular interest to note that, surprisingly enough, this situation is 
not altered by the presently available refinements of the analytical expressions. 
It is seen from figure 3 that the recent results of Chester & Breach (1969), who 
extended the Proudman & Pearson theory to higher-order terms, do not give 
a better fit to the actual drag. Proudman (1969) tried to remedy this problem by 
pointing out that the poor convergence of the Proudman & Pearson expansion is, 
at  least in part, due to the lack of suitability of the function D for expansion in 
terms of iNEe. Based on semi-empirical arguments, Proudman suggested a new 
functional relationship between NRe and DID,, which we have evaluated numeri- 
cally for various values of the parameter m in his relationship. We plotted the 
results for the case that m = 5. Smaller values of m give a progressively worse fit 
to our experimental drag at  low Reynolds numbers and a fit which is not much 
better at  higher Reynolds numbers. Larger values of m do not improve the fit at  
low Reynolds numbers, and make the bad fit at  higher Reynolds numbers even 
worse. It is seen from figure 3 that Proudman’s (1969) proposed semi-empirical 
relationship provides indeed a substantial improvement over that proposed by 
Proudman & Pearson (1957) up to NRe w 7. At larger Reynolds numbers, 
Proudman’s results deviate sharply from the actual drag. At Reynolds numbers 
between 1 and 7, the fit to the actual drag is about as good as that of Carrier’s 
(1953) semi-empirical modification of the Oseen theory. The agreement between 
our experimental values for the drag and the experimental values of Maxworthy 
(1965) is satisfactory at  Reynolds numbers between 3 and 12. At NRc < 3 
Maxworthy’s values deviate progressively from ours reaching the Oseen drag at 
a Reynolds number of about 0.4, while our experimental and theoretical values 
for the drag approach the Oseen drag via the Proudman-Pearson drag. 

It is felt that the good agreement between our theoretically obtained drag and 
our experimentally determined drag give support to our values for the eddy 
length and angle of flow separation, which were calculated on the basis of the 
same physical and numerical model as the drag. 

(ii) Another conclusion can also be drawn from figure 3. A close inspection of 
our drag curve reveals that the variation of the drag with Reynolds number 
follows well-defined regimes, which are quite pronounced in our experimental 
drag curve, and slightly less pronounced by our theoretical drag values. These 
regimes are manifested by almost constant slopes of the drag curve within certain 
Reynolds number intervals, and rather strong changes of slope at  a particular 
Reynolds number. Two Reynolds numbers at which a change of regime occurs 
were noted. The first change of ‘drag rhgime ’ appears to lie at NRe = 20, which 
coincides with the Reynolds number at which our numerical results indicate 
onset of separation and formation of a standing vortex in the back of the sphere. 
The second change of regime seems to occur at  NRe = 400, which coincides with 
the Reynolds number at  which experiments reported in literature indicate 
onset of shedding of vortices from the downstream end of the sphere into the 
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NRs = 2aV,/v 

FIGURE 4. Variation of the drag force coefficient and tho relative drag force Coefficient 
with Reynolds number for the case of a cylinder: (l), Lamb's formula; (Z), asymptote to 
Lamb's formula at NRs = 0.1; (3),  curve fitted to experimental data from literature; 
(4), C,/C', obtained graphically. 

FIGURE 5. Variation of the eddy length with Reynolds number for the case of a cylinder. 
Theory : 0, KawagutiJain ; x , Underwood ; 0, Son-Hanratty ; A, Hamielec-Real ; 
*, Apelt; + , Keller-Takami; +, Thorn; 0, Dennis-Shimshoni. Experiment: D, Homann; 
A, Fage; 0,  Taneda. 

50-2 
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main stream. This indicates that the regimes known to be present in the flow 
field induce rdgimes in the drag. This feature is somewhat expected, but could 
only be revealed by accurate values of the drag if plotted on a sensitive scale such 
as log [(DID,) - 11 versug log NRe. Such drag regimes are a very useful feature of 
the drag, since it is possible to approximate the drag in each regime by an 
empirical relation of the form (DID,) - 1 = aNge, where a! and p are constants, 
a relationship used by Beard & Pruppacher (1969) to compute the fall velocity of 
cloud drops for any level in the atmosphere. 
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FIGURE 6. Variation of the angle of flow separation with Reynolds number for the case of a 
cylinder. Theory : 0, Kawaguti- Jain : x , Underwood ; 0, Son-Hanratty ; A, Hamielec- 
Raal; 0, Dcnnis-Shimshoni. Experiment: 0,  Homann; H, Taneda. 

3. The cylinder 
It was tempting to test whether the relations between drag and flow field found 

for the case of flow past a sphere would also be found for the case of flow past a 
circular cylinder. We compiled the best measurements available for the drag 
coefficient C, of a cylinder (Wieselberger 1922; Finn 1953; Tritton 1959; Jaya- 
weera & Mason 1965), plotted their results in form of logC, as a function of 
log NRe and fitted a curve to these values with great care. This curve is given in 
figure 4. (Due to photographic reduction in size and reproduction for printing the 
curve given in this article is only a qualitative, and not a quantitative, reproduc- 
tion of the large detailed original graph!) For comparison, the variation of the 
drag coefficient with the Reynolds number given by the formula of Lamb (1 932) 
is also given. Completely arbitrarily we choose to draw an asymptote to Lamb's 
drag curve a t  NHe = 0.1, in order to obtain a reference drag coefficient C;. 
Graphically, values for (C,/C;) - 1 were determined for 1.0 6 NRe 6 300 and 
plotted on log-log scale in figure 4. It is seen from this figure that the variation 
with Reynolds number of (C,/Cb) - 1 follows pronounced rdgimes. Two Reynolds 
numbers at which a change of regime occurs were noted. The first change of 
regime appears to be at NRe = 5, and the second at NRe = 40. In  order to test 
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whether these two changes of rkgimes in the drag curve are related to the flow 
field regimes around the cylinder, we plotted in figures 5 and 6 values for the 
length of the standing eddy and the angle of flow separation at a cylinder based 
on the theoretical values of Kawaguti & Jain (1966), Underwood (1969), Son & 
Hanratty (1969), Hamielec & Raal (1969), Apelt (1958), Keller & Takami (1966), 
Thom (1933), Dennis & Shimshoni (1964), and based on the experiments of 
Taneda (1956b), Page (1934), and Homann (1936). The variation of L / d  and 0, 
with Reynolds number indicates that a standing eddy begins to develop at  
Nne M 5. Experiments carried out by Taneda (1956b), Roshko (1954) and Homann 
indicate that vortices from the rear of the cylinder begin to be shed at  NRe M 40. 
The agreement between the Reynolds numbers marking the transition between 
flow field regimes with the Reynolds numbers marking the changes in the drag 
rBgimes demonstrates that, as in the case of a sphere, also in the case of a cylinder 
the drag field regimes reflect the regimes in the flow field. 

One of the authors (H. R. Pruppacher) is indebted to the U.S. National Science 
Foundation (Grant no. GA-759), and two of the authors (B. P. Le Clair and A. E. 
Hamielec) are indebted to the National Research Council of Canada for sup- 
porting the research reported in this paper. 
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